Temperatur-Kontrolle

Aus microbit - Das Schulbuch
Zur Navigation springen Zur Suche springen
Die Druckversion wird nicht mehr unterstützt und kann Darstellungsfehler aufweisen. Bitte aktualisiere deine Browser-Lesezeichen und verwende stattdessen die Standard-Druckfunktion des Browsers.

Icon Raumtemperatur exakt messen? Ist doch eigentlich easy!

Detailansicht Schaltung
Detailansicht Schaltung
„Sag mal Petra, ist dir auch so heiß wie mir?“
„Äähhhm, … nein?! Aber wir könnten die Raumtemperatur mit dem microbit checken. Was meinst du, Marcel?“
„Naja, der hat ja so einen Sensor auf der CPU, glaube ich. Aber wie messen wir dann den Raum?“
„Marcel, das geht einfach mit einem externen Sensor, der weit genug von der CPU entfernt ist - z.B. mit Krokoklemmen-Kabeln. Lass uns das doch gleich ausprobieren, einverstanden?“

Icon Aufgabenstellung

Der BBC micro:bit dient als Messgerät für die echte Raumtemperatur ohne dabei die CPU Abwärme mit zu messen.
Sobald der micro:bit mit Strom versorgt ist und sich an die Umgebungstemperatur angepasst hat (ca. 5-10 Min.), misst er dauerhaft.
Wird die Taste A gedrückt, zeigt er den Wert als Zahl.

<spoiler>

  • Zur Ermittlung der Temperatur wird eine analoge Schaltung (vgl. Thermometer mit Quecksilber) aufgebaut
  • Dazu wird ein Stromkreis mit Krokoklemmen und Sensoren aufgebaut
  • Der Strom vom micro:bit gelangt über Kabel und Sensoren vom Stromausgang an einen Stromeingang des micro:bit
  • Es kann nun temperaturabhängig gemessen werden, wie viel davon vom ursprünglichen Strom tatsächlich in den micro:bit zurück kommt
  • Dieser Wert wird als Graph auf der LED Matrix angezeigt

</spoiler>

Icon Materialien

Schaltungsaufbau analaog
Schaltungsaufbau analaog
  • BBC micro:bit
  • 3 Krokodilklemmen-Kabel (unterschiedliche Farben)
  • 1 Thermistor 10 K <spoiler>Thermistor + Widerstand

Einkaufsvorschlag: | erhältlich bei Fa. Conrad</spoiler>

Einkaufsvorschlag: | erhältlich bei Fa. Conrad</spoiler>

  • 1 Thermometer zum Kalibrieren der analogen Schaltung
  • 2 unterschiedliche Temperaturmessungen (mind. 10 Grad Celsius Unterschied) z.B. Zimmer und Kühlschrank
  • etwas Zeit bei plötzlichem Temperaturwechsel zur Akklimatisierung

Icon Zeitaufwand

  • ca. 2 Schulstunden zum Aufbau der Schaltung und Kailbrieren des Messaufbaus <spoiler>Die Bestimmung der Steigung einer Geraden, sollte extra vorbereitet und zeitlich vor diesem Experiment durchgenommen werden!</spoiler>
  • ca. 1-2 Schulstunden zum Entwickeln des Programmes und für erste Messungen <spoiler>Achtung! Jeweils ca. 5 - 10 Minuten zur Anpassung an die jeweilige Umgebungstemperatur mit einrechnen!</spoiler>

Icon Schwierigkeitsgrad

borderlessborderlessborderless

Icon Kompetenzen

Du lernst

  • vernetztes und fachübergreifendes Denken
  • das Formulieren und Kodieren von Abläufen in formalen Algorithmen
  • das Arbeiten mit Pins und Krokoklemmen-Kabel
  • Sensordaten zu lesen, zu interpretieren, und umzurechnen
  • die Steigung einer Geraden mit 2-Punkt-Kalibrierung ausrechnen

<spoiler>Wiki Steigung in 2D</spoiler>

Icon Unterrichtsfächer

INF, BU, WE

Icon Tipps und Hilfestellung

Ziel

Der micro:bit soll die Umgebungstemperatur messen und auf Knopfdruck im Display anzeigen.<spoiler>

  • Zu Beginn wollen wir nur zwei Widerstandswerte (0-1023) und Temperaturen (innen/ außen) mit dem Thermometer messen
  • Durch Drücken des Knopfes B wird der aktuelle Messwert (0-1023) angezeigt. Dies wird für die Innen- und Außentemperatur (oder Kühlschrank) gemacht.
  • Dann berechnen wir die Steigung der Geraden aus den zwei Messpunktwerten und denn Nullpunkt z.B. mit Geogebra ==> Kalibrierung
  • Nach Kalibrierung der Schaltung kann der micro:bit jede beliebige Temperatur messen und anzeigen (Wartezeit für Thermistor ca. 5-10 Min.)
  • Durch Drücken des Knopfes A wird die umgerechnete Temperatur angezeigt.
  • Verschwende keine Energie und optimiere deinen Code, je weniger Zeilen desto besser. Probiere so wenig Zeilen wie möglich zu verwenden.

</spoiler>

Erforderliche Programmierblöcke

  1. beim Start <spoiler text="Block *">
    Start


    * Der Block "leer" wird systembedingt mit angezeigt. </spoiler>
  2. Variable <spoiler text="Block *">
    let TempWert = 0


    * Der Block "beim Start" wird systembedingt mit angezeigt. </spoiler>
  3. pausiere <spoiler text="Block">
    basic.pause()


    * Der Block "beim Start" wird systembedingt mit angezeigt. </spoiler>
  4. Wenn Knopf A gedrückt <spoiler text="Block">
    input.onButtonPressed(Button.A, function () {})
    </spoiler>
  5. analoge Werte von Pin in Variable einlesen <spoiler text="Block *">
    TempWert = pins.analogReadPin(AnalogPin.P0)


    * Der Block "beim Start" wird systembedingt mit angezeigt. </spoiler>
  6. zeige Zahl<spoiler text="Block *">
    basic.showNumber()


    * Der Block "beim Start" wird systembedingt mit angezeigt. </spoiler>

Eckpfeiler zur Programmierung

  1. Durch Auslesen des analogen Spannungswertes eines Pins kann der micro:bit als Messgerät verwendet werden.
  2. Die Spannung des micro:bits von 3 Volt wird durch die elektronische Schaltung (Thermistor + Widerstand) und etwas Wartezeit (ca. 5-10 Min.) auf die aktuelle Temperatur eingestellt.
  3. Dann lesen wir die Spannung an PIN 0 aus und bilden diesen Wert in einer Variable ab.
  4. Den Spannungswert der Variablen geben wir zur Kalibrierung bei Drücken des Knopfs B im Display aus.
  5. Die eingelesene Variable muss nur noch in eine Temperatur umgewandelt werden,
  6. Der umgerechnete Wert wird durch Drücken des Knopfs A im Display angezeigt.
  7. Schritt für Schritt zur Lösung

    Hinweise zur Lösungsfindung und die Lösung findest du auf der Lösungsseite zu diesem Beispiel.

    Icon Präsentation und Reflexion

    1. Stelle dein Ergebnis vor!
    2. Was kann dein Messgerät? Messen andere micro:bits gleiche Werte?
    3. Vergleiche die Werte unterschiedlicher Blumentöpfe.
    4. Hast du aussagekräftige Werte bekommen? Kannst du damit eine Skala erstellen?
    5. Was hat dir bei der Entwicklung deines Produkts gefallen?
    6. Welche Schwierigkeiten hattest du? Wie konntest du sie lösen?
    7. Erläutere, wie dein Programm aussieht!
    8. Was war bei dieser Aufgabe interessant für dich?

    Icon Weiterentwicklung